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Marginal Stability of Ion-Acoustic Waves in a
Weakly Collisional Two-Temperature

Plasma Without a Current

1. INTRODUCTION ,..

.I,,

For collisionless current-free and current -carrying two-temperature plas- ."

mas, the stability of ion-acoustic waves has been studied, and the results have oar,

been accepted for many years. For example, linear Vlasov theory predicts that

ion-acoustic waves in current-free plasma are Landau-damped, and the plasma is
stable. I In the presence of a current, ion-acoustic waves become unstable when

the current exceeds a threshold value. •
For collisional plasmas, the stability situation is unclear. On the one hand, :

there are studies of collisional, current-free plasma that indicate that ion-acoustic L,%"

waves are damped. 2, 3, 4 In their work, Kulsrud and Shen 2 and Ono and Kulsrud 3  *

assumed that the electrons were isothermal and solved the Fokker-Planck equation "4uti
for the ions to find that i-i collisions damped ion-acoustic wavesti solved the

(Received for publication 5 August 1987) ..
1. Fried, .D.W, and Gould, R.eW. (1961) Longitudinal ati t ons in a hotre

plasma, Phys. Fluids, 4:139-147.C

2. Kulsrud, R. M. , and Shen, C. S. (1966) Effect of weak collisions on ion waves,
Phys. Fluids, 9:177-186. .

3. Ono, M., and Kulsrud, R.M. (1975) Frequency and damping of ion acoustic
waves, Phys. Fluds, 18:1287-1293 b sa

4. Buti, B. (1968) Ion acoustic waves in a collisional plasma, p, Rev. 65 is

195-201.
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Fokker-Planck equation in the weakly collisional limit for both the electrons and

the ions to find that e-i collisional undamping was small compared with i-i colli-

sional damping for a wide range of wavenumbers and temperatures. On the other

hand, there are studies of weakly collisional plasma, driven unstable by the pres- $ 0

ence of a current, which indicate that e-i collisions have a significant undamping

effect 2 ' on ion-acoustic waves and lower the critical current required to produce

n current-driven instability. In these studies, 2, 5 however, the authors gave no

discussion of the stability of the plasma in the limit of zero current. In our view,

the stability of ion-acoustic waves in a weakly collisional, current-free plasma is .

unresolved. The purpose of this report is to present a resolution based upon the
Balescu-Lenard-Poisson equations.

The Balescu-Lenard kinetic equations for the one-particle distribution func-

tions for a weakly coupled (g <<1) plasma, which may be used to study long wave-

length phenomena, are derived by truncating the Bogoliubov-Born-Green-Kirkwood-

Yvon hierarchy to the first order in g, by applying the adiabatic approximation and
6by using time-asymptotic solutions for the pair correlation functions. Here, g is

the plasma parameter. Use of the adiabatic approximation implies that the pair 0

correlation functions relax on a time scale that is fast compared with that or the

one-particle distribution functions, and use of time-asymptotic solutions for the

pair correlation functions implies that plasma waves are not growing in time. Al-

though the adiabatic approximation is known to break down for W greater than the
7electron plasma frequency (Jasperse and Basu, Section IVC), we assume that it

is valid for low frequencies and long wavelengths. We also assume that the time-
asymptotic solutions for the pair correlation functions are valid in stable plasmas

up to the limit of marginal stability.

Irethis report, wepresent~two important results for a weakly collisional,

current-free, two-temperature electron-ion plasma: (1) that e-i collisions have -

an undamping effect on ion-acoustic waves, and (2) that, for appropriate values of
the plasma parameters, ion-acoustic waves become marginally stable. Gur re-

sults are based on the closed form solution for the dielectric function for the line-

arized Balescu-Lenard-Poisson kinetic equations, which is given by Eq. (2). The

weakly collisional ordering'we consider, which-is necessary to obtain an iterative %. ".

5. Ong, R.S.}B., and Yu, M.Y. (1969) The effect of weak collisions on icin- *4

acoustic wave instabilities in a current-carrying plasma, J. Plasma Phys.
3:425-433; Stefant, R.J. (1971) Influence of electron-ion collisions on ion
acoustic waves, Phys. Fluids, 14:2245-2246.

6. Montgomery, D.C., and Tidman, D.A. (1964) Plasma Kinetic Theory,
McGraw-Hill, New York.

7. Jasperse, J. R., and Basu, B. (1906) The dielectric function for the talescu- 0
Lenard-Poisson kinetic equations, Phys. Fluids, 29:110-121.
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solution for the collisional dielectric function, imposes two independent restric-

tions on the parameters that characterize the plasma. 'They are: (1) ./.
ei ia

e. / wpi) (ke/k) < 1 or 1/kX ei = Ve/kVTe < (m1e/Mi/2 and (2) V ii/Wia << 1 or

1/kA. = v./kvTi < 1. Here, vi(Vii) is the e-i (i-i) collision frequency; W. is
ii ii Tii i

the ion-acoustic wave frequency; w pi is the ion plasma frequency; ke is the electron
Debye wavenumber; X ei ( X ii ) is the e- i (i-i) mean free path; vTe(VTi) is the elec-

tron (ion) thermal speed; and the other quantities have their usual meanings. The

approximate marginal stability condition is

ei /ia (' ei/w pi) (ke/k) = (27)/2 [(rne /m.il/2

+ (TeO/Tio) 3/2 exp(-3/2 - T 0 /2Ti0)1, (1)

provided that Ti0/Te0 and k/ke <<1 and the inequality 1> v ei/W ia holds. Here,

V ei (21/2 In Aei/ 1 2 3/2) g Wpe, where g is the plasma parameter, In A ei is the

Coulomb logarithm, and w pe is the electron plasma frequency.

2. CLOSED-FORM SOLUTION FOR THE COLLISIONAL
DIELECTRIC FUNCTION

We begin with the nonlinear Balescu-Lenard-Poisson kinetic equations for an

unmagnetized, two-temperature electron-ion plasma. We consider a quasi-steady,

zero-order state where the zero-order distribution functions are Maxwellian with

unequal temperatures (Te 0 j Ti0). In order to obtain the dielectric function that
contains the effects of e-e, e-i, i-e, and i-i collisions to the first order, we line-

arize the equations for small amplitude, electrostatic perturbations about the
zero-order state and apply the collisional propagator expansion method8 appropri-

ately generalized for a two-constituent plasma. Using the techniques discussed in

Jasperse and Basu, 7 we find that all of the integrals that appear in the dielectric.-

function may be reduced to the simpler forms presented here. Since the algebra

involved is straightforward but lengthy, the details of the calculation will be re-

ported elsewhere. The dielectric function to the first order in collisionality is:

(1) (k, w) = 1 + I (ka/k)2 {W0(z) + i lna [A ''(z,) + Ba(z) . (2)

tCt

8. Jasperse, J. H. (1984) A propagator expansion method for solving linearized 0
plasma kinetic equations with collisions, Phys. Letters, 106A:379-382.
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Here, k2 = 4 T n 0 q /T 0, k zk, z w/kVTa, vTa a' = (,,T.0

/kv Vci (4/3)(2 T)1/2 (q 2 q2  no 1/2r T3/2) (1 4 m )(1 + C )3/2'
Tat' a3 a 60 a 0 a-,

2 2 0
Sn Aa is the a collision frequency, cat VTA /V aL rn, /M- and

1 3 -,'A al( ) =(1) (1 4 1: )C ( + m aI {+[1 3 C (T - 1)( 1 -%

2 ( 0 )  a+ 6 m q (1 + )

(0) +()
[(1 + rn c3) i (r) 1) i(1g, a ',r t) + i(T 1) (

)3/2)- ( )( ,

B,1 ) 3 3ar (TL -1) (1 4 q (, ) (1 +a )3 (1 + mn ) i'; (t)

I(n) 1 -n d 2(1 _ 2 + -(4 n)/2 w [a (u)5]., 0. W2 -n ,'W

(n) 22 2 - n

;0 1 dni ii (1 o Ci La In dt t

2 2
x exp IibX. (n) t - C (u 'n [a,, (u + i'-

)]1/2 ,,.,

In the above n = 0, 1, T = Ta0 IT :a, [(1 -)(1 - e ')]
= q /q,4 , b = [(1 c .(I - (x3 ) , and cap = (-)

9. 4 2 (,
[(1- <)(1 - %: )' + 4. The n -functions are given by

IN in n I 2
n ) 0 dt t exp (it - t /2),

where n 0, 1, 2,..., XVn( ) (d/d )n \o(n ), and Wo( r) is related to the plasmadiprso fntonZ r b \0 ( r) -n /92 (1/19)
d 1 /2 1/2 In Eq. (2), k has been

00

oriented along the positive z-axis. We note that, when T - T in Eq. (2), we
9

obtain Eqs. (1) and (2) of Jasperse and HasLI. Also, when Te T T and ion mo-_

tion is neglected, we obtain Eqs. (26) through (30) of lasperse and Basu' for the *. ..-

high -frequencv dielectric function.

zasperse, .1. R. and Ila su, 1. (1)987) ( olI isional enhancem ent of I1o -fCequencv
(lensitv fluctuations in a \ealklv collisional electron-inn plasma. ).hx_ . ICe .

l.etters, 58:142:3-1425.
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3. STABILITY ANALYSIS

Numerical solutions of the dispersion relation, e 1 (k, w)= 0, for ion-acoustic

waves, that is, for vi < Iwlkj < ve and k/ke < 1, an7o ,B 2Ig, are

presented in Figures 1 and 2. Figure 1 shows the dependence of Im co /Re w (IM w

<means stability) on k/k and T IT for an Argon plasma with g =2 x 10-5 .

ISO

.04
ARGON PLASMA

g 2x 16'

.02

00
TeY/Tioz 20

E
..04,

Teo/ Tio= 7

-.06-

.08

-.10 I

0 .05 .10 -15 .20 .25 1

k Ike

Figure 1. Values of Im w /Re w From a Numerical Solution of
the Dispersion Relation for Ion-Acoustic Waves in a W eaklyv
Collisional Argon Plasma Using Eq. (2)

5
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Figure 2, where we have plotted the values of g (denoted by gc) for marginal stabil-

ity as a function of me /m. and T /T for k/k = 0. 1, shows that marginal stabil- ..
e 1 eC jo e

ity results for a smaller amount of collisionality in heavier-ion plasmas having

larger values of T /T We also find from the numerical results that, when Ti0
is increased by a sufficient amount relative to Te0. a value of T /T is reached

eO e 0 O I.0

where ion Landau damping overcomes e-i collisional undamping and stabilizes the

plasma for all values of me /m i., k/kes and g. "w

10-2-

I I I I I I I 1 I I I I I I % " "

k/k e0.1

T T "7

,..%

-eQ io A

eO LO,

S10 510 10.

me/m*-.J, .i,

Figure 2. Values of the Plasma Parameter (Denoted by gc)
for the Marginal Stability of Ion-Acoustic Waves Using Eq. (2)
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In what follows, we presen-t some analytical results that we obtain from

Eq. (2) by making apprni riate approxim at ions. From Eq. (2), we see that C

contains eight collisional terms, two terms for each of the four collisional pairs:

e-e, e-i, i-e, i-i. The imaginary parts of the terms for each of the four colli-

Q) " br

sional pairs, denoted by X contribute to the imaginary part of the wave fre-
quency as damping or undamping. For ion-acoustic waves at long wavelengths, we

find that X o ( iso) l(i t wo 1: (16/5) (m /2 )1/2 (T /T o1/2 m /Mr:ei i-i ee ie e 1 eO o e i

in/in. We also find that (me/Mi J(O) (M/ P, and : eI" I I)
(e/mii) Je ei ei

" () () () () ( e/2i1/2 ,1/2 (1)

Hence, for /m i << 1 and (T e/T i)1/2 << (5/16) (2m./m /2 (1)may be well

approximated by %

J (1)(k /k 2  (k/) 2  I(0 ) (e)
) ( 1 + (k a/k) W 0 (za ) - (i/2) (ke /k ei ei (ze

In addition, we find that for VTi <<lw/k<< VTe, i -/ze and that c may

be approximated asymptotically by using the appropriate expansions for W0

0S
+ (k k)2 / 2 (1 + i(k /k) 2~(1) (k, wo) 1 + -) /)2( 4 3z. 2 )+ %,

e i e

1 (/2/2 1/2
T{(/2)1 (M/m z [(m /m.)

1 e e e I

0
S(Te/T 2 exp(-z /2)] - (vei/ 2w) } (3)

Ion-ion collisions result in a damping term in the dielectric function that may be
2 -4approximated analytically by (8i/5) (T e i/T.^o iiM (k e/k)2 z - and can be ne-

glected compared to the e-i undamping term for (T /T )l/2 <, (5/16)
1/2eQ io

(2mi/me)1/ Solving the dispersion relation for k/k << 1 and lImwI< Rew us- r .
1 e eing Eq. (3), we obtain

Rew k [(Te0 + 3 T 0 )/mi ] 1/2 i (4)

Im W- W {O/8)/2 [(m /mi)l/2
ia e 1

+ (Te0/Ti0 exp(-3/2 - Te 0 / 2Ti 0 )] - (ei/4w ia) (5) 0

which are valid when Ti0 << Te 0 and V <w ia In Eq. (4), we have neglected the

* first-order collisional shift in the expression for Be w. Eq. (5) for Im o is the sum

of three terms: The first is electron Landau damping, the second is ion Landau 0

7
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damping, and the third is an undamping term due to e-i collisions. From Eq. (5),
we find the marginal stability condition given in Eq. (1). When T /T > 20 and

eO i0o
k/k e < 0.1, Eq. (5) yields values that are within 10 percent of the results shown in

Figures 1 and 2. For smaller values of Te 0 /Ti0, numerical solutions are neces- 0

sary for accurate results.

By taking the velocity moments of the perturbed electron distribution function

and neglecting collisionless damping effects, we find that

selIn [1 - (i/2)(vei/w)J (e i/T e), (6)

TeT 0  (i/2) (,ei/w) (e l/T 0 ), (7)

where nel' Q1, and Te 1 are, respectively, the perturbed electron density, per-

turbed potential and perturbed electron temperature in k - W space. These results

show that the electrons are not isothermal and that there is a collision-induced,

temperature perturbation associated with the ion-acoustic mode. We recall that

in the linear Vlasov theory of the ion-acoustic mode, the electrons are isothermal

and T =.el
We have performed a quasilinear analysis of the Balescu-Lenard-Poisson

equations. We find that .. ...

0

1. Te 0 (t) -_ 2fdk (Im wk) e I(t) /Te(t) 2 (8)
T 0 (t) t 3 1-e--'

e'U

where Im w k is given by Eq. (5). For stable ion-acoustic waves, Eq. (8) indicates

that Te 0 initially increases with time while the electric field energy density,
k (t), 2 / 8 , initially decreases since 2 2 Im2<0 A

more detailed discussion will be presented elsewhere.

-1. (ON(:IISION 
I-*

In conclusion, we have shown by using the Balescu-Lenard-Poisson equations

that e-i collisions have an undamping effect on ion-acoustic waves for weakly col-

lisional plasma. The fact that this undamping effect persists even when Te0 = Ti0

is discussed in Jasperse and Basu. 9 For thermal equilibrium (T = T ) plasma,
eO jo ".

the undamping effect of e-i collisions on thermal fluctuations at the ion-acoustic

frequency from Jasperse and Basu 9 is 1.2 (Nei/4). For nonequilibrium (Te0 > Ti 0 )

plasma, the undamping effect of e-i collisions from Eq. (5) is ./4. We see that

8

10



the undamping effect operates for equilibrium as well as nonequilibrium plasma,

and has a value which, except for the T 3 /2 dependence of v' is nearly independ-)O
ent of T and Ti0 The difference between equilibrium and nonequilibrium plasma

is that, for equilibrium plasma, ion Landau damping easily overcomes e-i colli-

sional undamping, and the plasma is stable, whereas for nonequilibrium plasma,
a wavelength can be found where e-i collisional undamping balances ion and elec-

tron Landau damping, and the plasma is marginally stable. Our analysis suggests

that when v e/Wa exceeds the quantity on the right-hand side of Eq. (1) a collision-ei ia
driven ion-acoustic instability occurs. Although the Balescu-Lenard collision

operator may not be valid for unstable waves, it is our belief that such an instabil-

ity exists but the actual threshold condition may be slightly different. In order to

test this idea, we suggest that an experiment be performed. The threshold param- 6

eters given in Figure 2 should be useful in designing such an experiment. 0
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